Cobalt-Free Cathodes for Next Generation Lithium-Ion Batteries Neil J. Kidner Principal Investigator Nexceris, LLC June 11th 2019 Project ID: BAT417 #### Timeline Project Start Date: 01/01/2019 Project End Date: 12/31/2021 Percent Complete: 10 % #### **Budget** Total Project Funding: \$3.08 M ▶ DOE share: \$2.46 M Funding for FY2019: \$1.04 M ▶ DOE share: \$805k Funding for FY2020 ▶ DOE share: \$818k #### **Barrier and Technical Targets** Barriers addressed: ▶ Cycle Life: 1000 cycles C/3 deep discharge with < 20 % energy fade ▶ Cost: < \$100/kWh #### **Partners** - Ohio State University: Jung-Hyun Kim - Battery testing - ▶ Cell chemistry development - Navitas Systems Michael Wixom - Large-scale electrode fabrication - 2-Ahr battery manufacture and testing #### **Impact** - ▶ Renewed interest in reduced or cobalt free Li-ion battery cathode formulations - Innovate high-voltage Li-Ion batteries by producing an effective kinetic barrier that can act as a cathode SEI layer and enhance battery stability #### **Project Objectives** - Demonstrate lithium manganese nickel titanium oxide (LNMTO) as a high performance and cobalt-free Li-ion battery cathode material - Maintain high specific performance associated with LNMO - ▶ Enhance cycle life to achieve > 1000 cycles - Identify low-cost, scalable manufacturing process for LNMTO cathode powder #### **Objectives Budget Period FY19** - Down-select solid-state synthesis process for manufacture of high-voltage spinels - Demonstrate applicability of LNMTO based cathodes through 2-Ahr testing # Approach/Strategy - Milestones | | FY 2019 | | FY 2020 | | | | | | |---|--|----------|----------|----------|--|----------|----------|----| | Milestone/Decision Point | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | | 1 st iteration of solid-state LNMTO powder delivered | ♦ | | | | | | | | | Decision-Point: Down-selection of solid-state synthesis process
Compositional homogeneity and coin-cell performance | | ♦ | | | | | | | | Down-selection of co-precipitation LNMO process | | | | ♦ | | | | | | Decision Point: PPC chemistry, fabrication/conditioning process defined | | | ♦ | | | | | | | 2-Ahr PPCs fabricated and delivered to DOE 20 PPCs fabricated, 15 delivered to DOE 15 completed performance testing | | | | ♦ | | | | | | Go/No-Go Decision Point: Performance testing of PPCs completed Achieve meaningful improvement over current LNMO, equivalent to LMNTO | | | | * | Greater than 200 cycles wi 20 % energy fade (C/3, 25 ° Specific energy > 650 Wh/g | | | | | PPC post-mortem analysis completed | | | | | \rightarrow | | | | | Decision Points: Candidate core-shell LNMTO powders down-selected | | | | | | ♦ | | | | Promising cell chemistries down-selected | | | | | | | ♦ | | | Go/No-Go Decision Point: Testing of 2-Ahr cells completed
Demonstrate that core/shell modification enhances cathode performance | Cycle life > 500 cycles with 20 % energy fade (C/3, 25 °C) Specific energy > 650 Wh/g | | | | | | | | #### Develop cobalt-free cathode based on high-voltage LiNi_{0.5}Mn_{1.5}O₄ (LNMTO) - Improve cycle and calendar life of high-voltage spinel cathodes by forming a solidelectrolyte interface that effectively passivates the cathode surface - Microstructural enhancement of the LNMTO powder to create novel core/shell structures where titanium is preferentially located at the surface - Incorporate optimized binder/electrolyte chemistries to address degradation ### Technical Progress: Solid-State Processing #### Successfully manufactured LNMTO cathode powder using solid-state synthesis ## Synthesized high voltage spinel cathode materials using solid-state process - Baseline LNMO - Process iterations have shown steady performance improvement for LNMTO #### Identified key process parameters - Integrated new mixing process - Optimized calcination profile - Evaluated post-fire annealing process Established baseline manufacturing/cost model ### Technical Progress: Preliminary Cell Testing #### <u>Demonstrated cell performance of LNMO and LNMTO solid-state spinel powders</u> # Collaboration and Coordination with Other Institutions | Collaboration | Role | | | |---------------------------|--|--|--| | THE OHIO STATE UNIVERSITY | Sub-contractor, University Coin-cell and single-layer pouch cell screening of cathode materials Cell chemistry (additives/binder) development Analytical characterization of cathode materials and electrodes | | | | SYSTEMS | Sub-contractor, Industry O Electrode scale-up O Large format 2-Ahr battery fabrication and testing | | | Nexceris is working to identify additional opportunities to collaborate both within and outside of this project Partners for high volume manufacturing ### Proposed Future Research (FY2019 and FY2020) #### **Ongoing Work FY 2019** | Future Work | Justification | Key challenges | |--|--|---| | Complete down-selection of solid state LNMTO synthesis process and cell chemistry Q2 and Q3 milestones | Identification of optimal LNMTO powder
& complimentary cell chemistry for PPCs | Complete process development in time Risk mitigation for large 2-Ahr battery
fabrication and testing | | Fabrication & performance testing 2-Ahr cells Q4 milestone and FY2019 Go/No-Go DP | Demonstrate technology applicabilityFY2019 deliverable | Compressed timelineCoordination of testing protocol | | Develop LNMO co-precipitation process <i>Q4 milestone</i> | Required for core/shell development in FY2020 | o Homogeneity of LNMO powder | #### **Proposed Future Work FY 2020** | Future Work | Justification | Key challenges | |--|---|--| | Post Mortem analysis of PPCs Characterize surface of aged electrodes | Identify opportunities to improve cell
performance (cathode powder and/or
cell chemistry) | Ensure primary degradation mechanisms
are addressed, and mitigation strategies
incorporated into work-plan | | LNMTO core/shell microstructure development
LNMO core with TI-enriched surface | Increase cycle-life w/o degrading capacity Establish strong IP position Pathway to achieve Y2 Go/No-Go DP | Efficient screening of candidate processesUniformity of Ti-enriched surface layer | | Tailoring of cell chemistries for high V cathode Stabilization of electrode/electrolyte interfaces | Critical to implement to achieve required
cell stability and cycle life | Identification and validation of cell
chemistries for high V cathodes | #### Accomplishments: - Developed solid-state synthesis process for high-voltage spinel cathodes - Solid-state LNMO and LMNTO powder successfully synthesized and tested - ▶ LNMO: Ti-free LiNi_{0.5}Mn_{1.5}O₄ (LNMO) has been successfully produced at pilot scale with ~ 130 mAh/g initial discharge capacity and 97.7% capacity retention @ 35th cycle (C/5-Ch & C/2-Dis at RT) - ▶ LNMTO: Ti-substituted LiNi_{0.5}Mn_{1.2}Ti_{0.3}O₄ has been developing at pilot scale and showed performance improvement: from 105 to 115 mAh/g initial discharge capacity #### Next steps: - Complete down-selection of solid-state process and cell chemistry - Risk mitigation and preparation for successful manufacture and testing of PPCs # Technical Back-Up Slides ### Cathode Powder Screening Protocol #### Battery Cell Testing (2032 stainless coin-cell) - Positive Electrode: LNMTO active metal (85 wt.%) + Super P (7.5 wt.%) + PVdF (7.5 wt.%) - Negative Electrode: Li-metal - Separator: Polypropylene (Celgard 2500, 25 μm-thickness) - Electrolyte: 1 M LiPF6 in 1:1 EC/EMC (Sigma-Aldrich) #### Tested with Arbin LBT cycler at RT ### Effect of post-process anneal #### 1-2 hour anneal improves LNMTO performance